



### Pseudocode

Logic Algorithm
Tri Hadiah Muliawati



# **Objectives:**

- Students able to understand the importance of pseudocode as an assisting tool to turn algorithms into code
- 2. Students able to turn algorithm and flowchart into pseudocode





### **Outline:**

- 1. Fundamental Pseudocode
- 2. Exercise







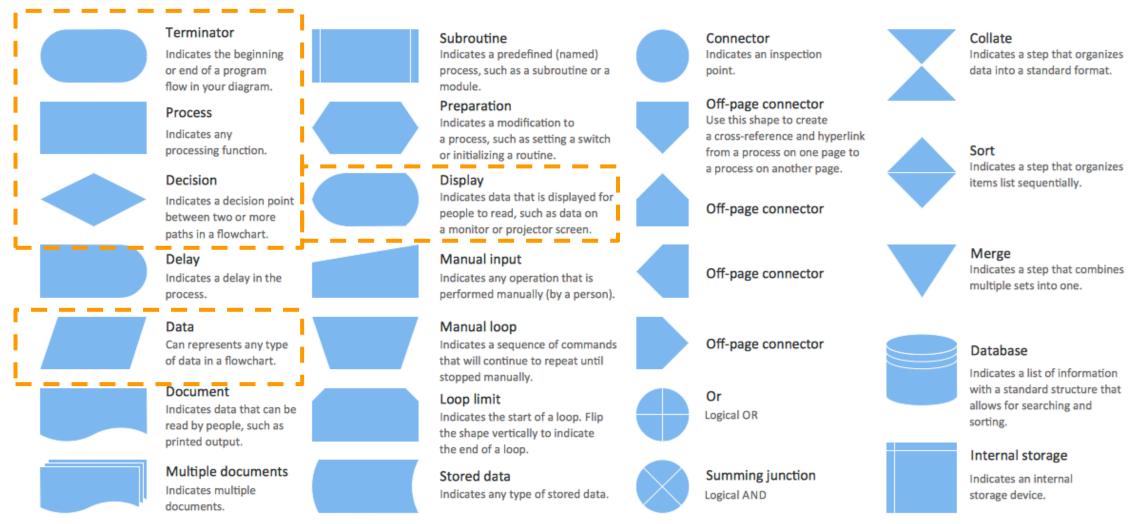
### **Fundamental Pseudocode**

# Let's Throwback to Algorithm

Algorithm is a way of specifying a multi-step task, and is especially useful when we wish to explain to a third party (be it human or machine) how to carry out steps with extreme precision.

The properties of an algorithm are:

- 1. Finiteness
- 2. Definiteness
- 3. Input
- 4. Output
- 5. Effectiveness




### Let's Throwback to Flowchart

- Flowchart can be seen as graphical representations of algorithms.
- Flowchart is more intuitive and make it easy to understand the algorithm (depending on the complexity of the problem however, sometimes algorithms may better represent the steps to solve the problem)
- We use standard symbols and shapes in a Flowchart to show the sequential steps of an algorithm.

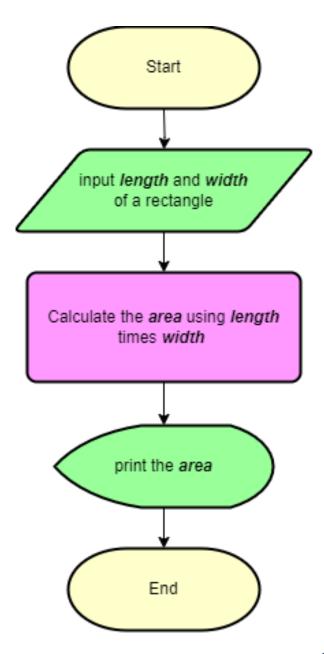


### Let's Throwback to Flowchart



Politeknik Elektronika Negeri Surabaya Logic Algorithm




Objective: Calculate the area of a rectangle

- Input the length of a rectangle
- Input the width of a rectangle
- Calculate the area using the length times the width
- Print the area

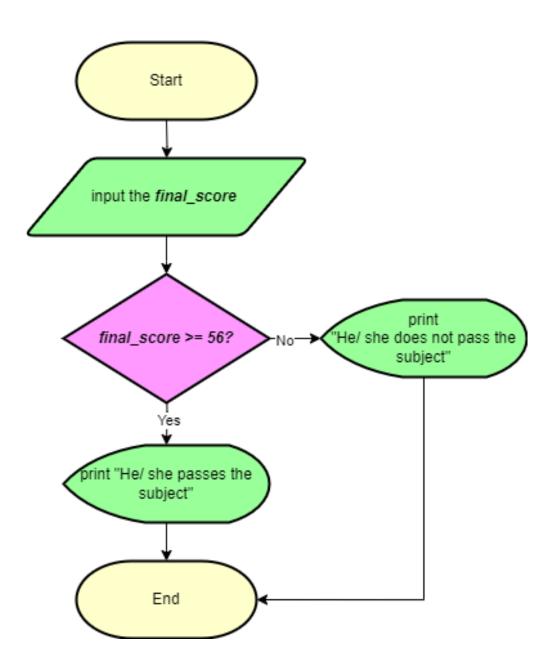


Objective: Calculate the area of a rectangle

- Input the length of a rectangle
- Input the width of a rectangle
- Calculate the area using the length times the width
- Print the area






Objective: Check whether a student passes "Pemrograman 1" subject or not. He / She will pass if the final score is more than or equal to 56.

- Input the final score
- Check whether the final score is more than or equal to 56
- If yes, print he/she passes the subject
- If no, print he/she does not pass the subject

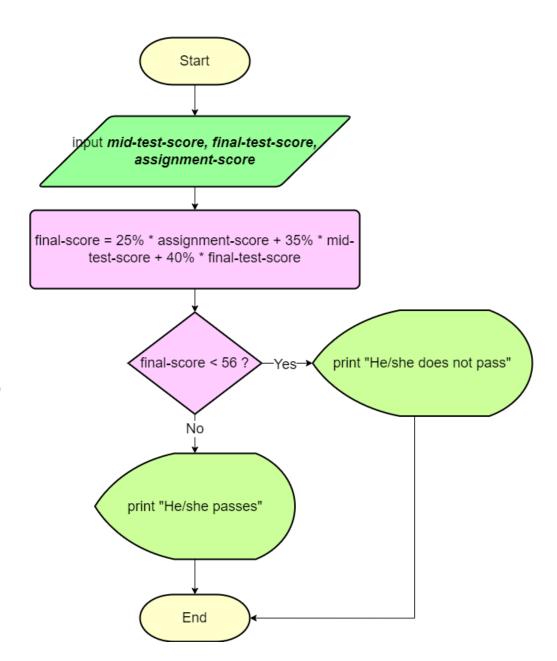


Objective: Check whether a student passes "Pemrograman 1" subject or not. He / She will pass if the final score is more than or equal to 56.

- Input the final score
- Check whether the final score is more than or equal to 56
- If yes, print he/she passes the subject
- If no, print he/she does not pass the subject






### **Exercise**

- Write an algorithm to check whether a student passes "Pemrograman 1" subject. He / She will pass if the final score is more than or equal to 56. Final score is calculated using 25% of assignment score, 35% of mid-test score, and 40% of final-test score.
- Draw the flowchart



### **Answer**

- Input the assignment, mid-test, and finaltest score
- Calculate the final score using 25% of assignment score + 35% of mid-test score + 40% of final-test score
- Check whether the final score is more than or equal to 56
- If yes, print "He/she passes the subject"
- If no, print "He/she does not pass the subject"



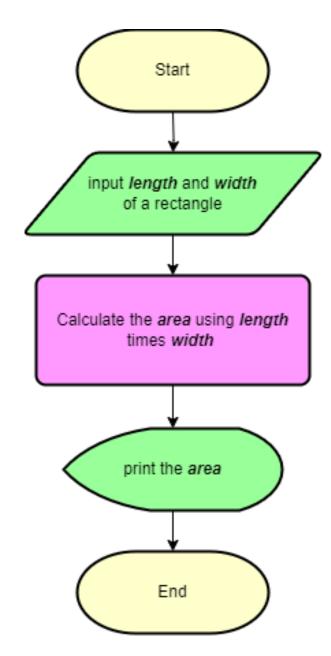


Flowchart can help to visualize the algorithm, thus we can understand it better. However, it is **not easy to turn a flowchart into a practical code**.

Therefore, we can use **pseudocode** as an assisting tool **to turn algorithm and/or flowchart to code**.



### What is Pseudocode?


- Pseudocode is a fake code that is an explanation of how to solve a problem
- Pseudocode uses a language that almost like programming language
- Apart from that, pseudocode usually uses language that is easy to understand and also more concise than algorithms
- In pseudocode, there is no standard syntax or grammar rules
- Therefore, we can apply this pseudocode in various programming languages



### Flowchart vs Pseudocode

Objective: Calculate the area of a rectangle:

- INPUT length
- INPUT width
- area ← length \* width
- PRINT area

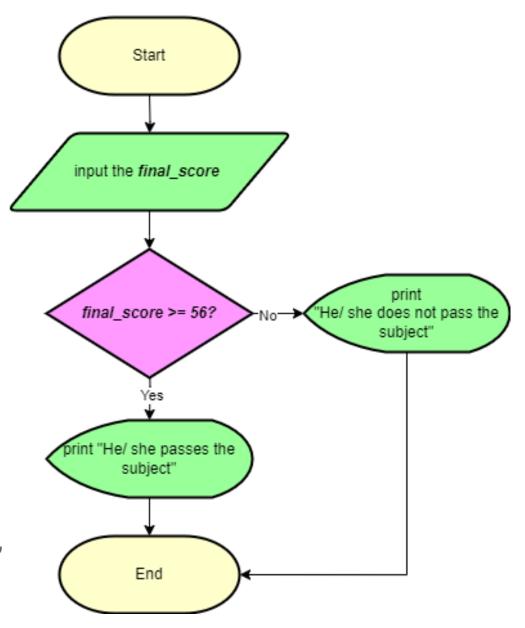




# Algorithm vs Pseudocode

Objective: Calculate the area of a rectangle

#### **Algorithm:**


- Input the length of a rectangle
- Input the width of a rectangle
- Calculate the area using the length times the width and save
- Print the result

- INPUT length
- INPUT width
- area ← length \* width
- PRINT area



Objective: Check whether a student pass "Pemrograman 1" subject or not. He / She will pass if the final score is more than or equal to 56.

- INPUT the final\_score
- IF final\_score >= 56 THEN
- PRINT "he/she passes the subject"
- ELSE
- PRINT "he/she does not pass the subject"
- ENDIF





### Algorithm vs Pseudocode

Objective: Check whether a student pass "Pemrograman 1" subject or not. He / She will pass if the final score is more than or equal to 56.

#### **Algorithm:**

- Input the final score
- Check whether the final score is more than or equal to 56
- If yes, print he/she passes the subject
- If no, print he/she does not pass the subject

- INPUT the final\_score
- IF final\_score >= 56 THEN
- PRINT "he/she passes the subject"
- ELSE
- PRINT "he/she does not pass the subject"
- ENDIF



#### **Variables**

Names of places to store values quotient, decimalNumber, newBase

#### Assignment

Storing the value of an expression into a variable

quotient  $\leftarrow$  64 quotient  $\leftarrow$  6 \* 10 + 4 SET quotient to 189





#### **Output**

Printing a value on an output device WRITE, PRINT

#### Input

Getting values from the outside word and storing them into variables GET, READ, INPUT





#### Sequence

A sequence consists of one or more instructions.

Each instruction is executed sequentially according to the order in which it was written.

#### **Example:** Exchange of two integers

- 1. DECLARE A, B, and C as integers
- 2. INPUT the values of A and B

$$4. A \leftarrow B$$

5. 
$$B \leftarrow C$$

| 1 | A  | В  | C  |
|---|----|----|----|
| 2 | 10 | 5  | -  |
| 3 | -  | 5  | 10 |
| 4 | 5  | -  | 10 |
| 5 | 5  | 10 | -  |

#### **Selection / Decision**

Making a choice to execute or skip a statement (or group of statements)

#### **Example:** Check if a certain number is a negative number or not

- 1. READ number
- 2. IF number < 0 THEN
- 3. WRITE *number* + " is a negative number."
- 4. ELSE
- 5. WRITE *number* + " is more than or equal to zero."
- 6. ENDIF



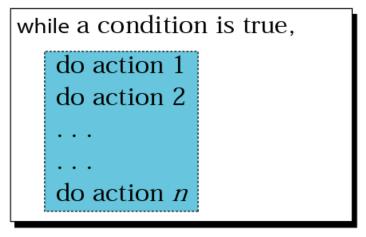
#### Repetition

Repeating a series of statements

# **Example:** Input and print 10 integer number sequentially

- 1. SET count to 1
- 2. WHILE ( count < 10)
- 3. WRITE "Enter an integer number"
- 4. READ aNumber
- 5. WRITE "You entered " + aNumber
- 6.  $count \leftarrow count + 1$

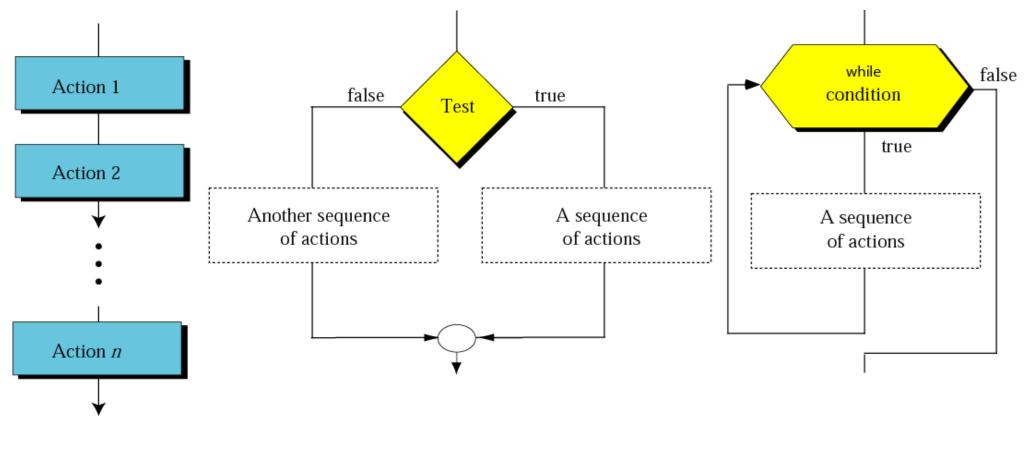



### **Three Constructs**

```
do action 1 do action 2 \dots do action n
```

a. Sequence

```
if a condition is true,
then
do a series of actions
else
do another series of actions
```


b. Decision



c. Repetition



# **Three Constructs (Flowchart)**



a. Sequence

b. Decision

c. Repetition



# **Three Constructs (Pseudocode)**

```
action 1
action 2

action n

action n
```

```
if (condition)
  then
      action
      action
  else
      action
      action
End if
```

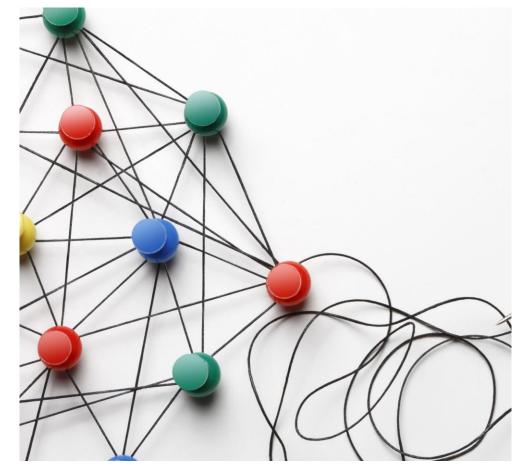
while (condition)
action
action
...
End while

c. Repetition

b. Decision



# Which one to Choose between Pseudocode or Flowchart?


#### **Flowchart**

Symbols convey different types of actions

#### **Pseudocode**

A cross between code and plain English

Use the one that you think is easier to assist you when constructing code



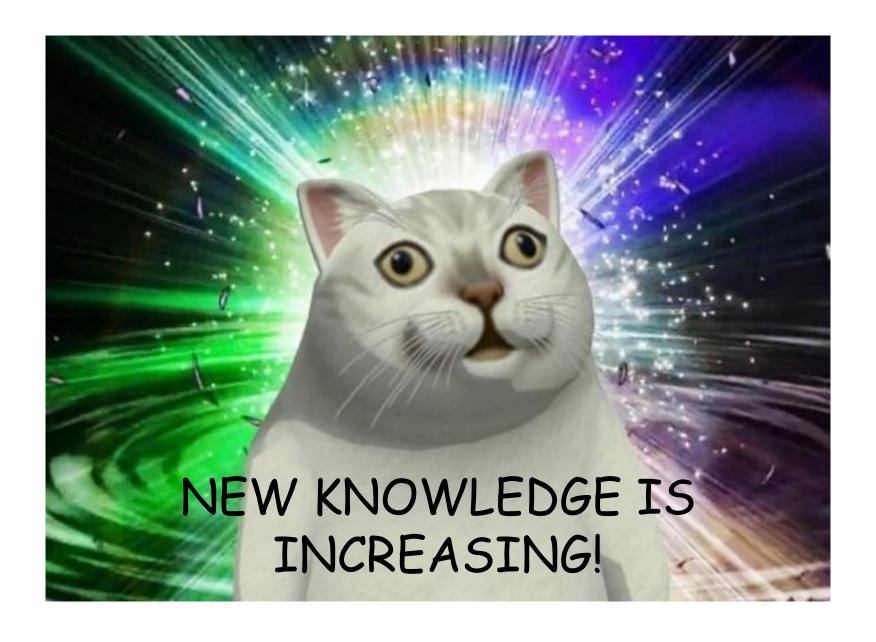


### Summary

- Pseudocode is a cross between code and plain English that is an explanation of how to solve a problem
- Pseudocode uses a language that almost like programming language.
- There are Three Constructs: Sequence, Decision, and Repetition



### Task


An automatic washing machine has three wash modes: Fast, Normal, and Intensive. The user selects the mode based on the level of dirtiness of the clothes. Each mode has a different wash duration:

Fast: 15 minutes

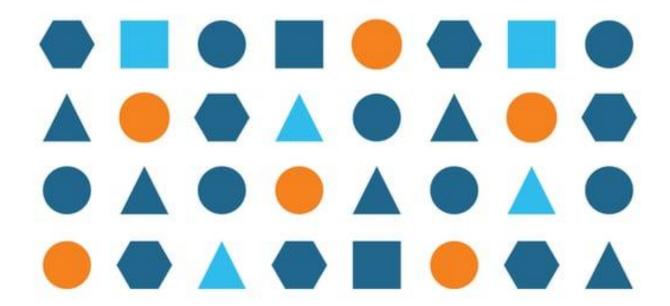
Normal: 30 minutes

> Intensive: 45 minutes

Create pseudocode that accepts user input for the selected mode and displays the appropriate wash duration.



Politeknik Elektronika Negeri Surabaya Logic Algorithm




### Reference

- 1. Karl, Beecher. "Computational Thinking: A Beginner's Guide to Problem-Solving and Programming." Swindon, UK: BCS, The Chartered Institute for IT (2017).
- 2. Dale, Nell B., and John Lewis. Computer science illuminated. Jones & Bartlett Learning, 2007.

### **Next week**

- We will learn about pattern recognition. Please read references about it.
- It is strongly encouraged to do self study and self-paced practicum.







### **THANK YOU!**